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A methodology for improving efficiency estimation based
on conditional mix-GEE models in longitudinal studies

Yanchun Xinga,b, Ma Wenqingb, and Chunhui Liangb

aSchool of Statistics, Jilin University of Finance and Economics, Changchun, Jilin, China; bSchool of
Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, China

ABSTRACT
Estimating random effects accurately is crucial since it reflects the
subject-specific effect in longitudinal studies. In this paper, we
develop a new methodology for improving the efficiency of fixed-
effects and random-effects estimation based on conditional mix-GEE
models. The advantage of our proposed approach is that the serial
correlation over time was accommodated in estimating random
effects. Meanwhile, the normality assumption for random effects is
not required. In addition, according to the estimates of some mixture
proportions, the true working correlation matrix can be identified.
The feature of our proposed approach is that the estimators of the
regression parameters are more efficient than CCQIF, cmix-GEE and
CQIF approaches even if the working correlation structure is not cor-
rectly specified. In theory, we show that the proposed method yields
a consistent and more efficient estimator than the random-effect
estimator that ignores correlation information from longitudinal data.
We establish asymptotic results for both fixed-effects and random-
effects estimators. Simulation studies confirm the performance of our
proposed method.
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1. Introduction

Longitudinal data arise frequently in many studies where repeated measurements from
a same subject are correlated. Identifying the true correlation structure of longitudinal
data is important for appropriate statistical analysis. For longitudinal data analysis, it is
important to incorporate the correlation among repeated measurements since utilizing
the true correlation structure can improve the efficiency of regression parameter estima-
tion and reduce the bias of the estimation (Wang 2003). Xu et al. (2012) proposed the
mixture generalize estimation equation method (mix-GEE) which views the working
correlation matrix by a combination of many working correlation structures. In addition
to obtaining more efficient fixed-effects estimates, their method can also identify the
true correlation structure. On the other hand, generalized linear mixed-effects model
(GLMM) has been widely used to analyze correlated longitudinal data when the subject-
specific effect is one of our interests. Standard mixed-effects models assuming normality
of random effects (see, e.g. Laird and Ware 1982; Breslow and Clayton 1993; McCulloch
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1997; Jiang and Zhang 2001; Vonesh et al. 2002; McCulloch, Searle, and Neuhaus 2008;
Diaz et al. 2007; Diaz, Yeh, and Leon 2012; Fang, Zhang, and Sun 2016) are major tools
to describe such longitudinal data. However, a normality assumption for random effects
could not be satisfied in practice on some occasions. This could affect the bias and effi-
ciency of the fixed-effects estimators. Moreover, even conditional on the random effects,
there may exist some serial correlation within the same cluster. To handle these correla-
tions, Wang, Tsai, and Qu (2012) proposed a new approach which is defined as conditional
quadratic inference function (CQIF) to estimate both fixed and random effects. However,
CQIF approach cannot identify the true correlation structure. Xing et al. (2018) developed
a conditional mixture generalized estimation equation (cmix-GEE) to improve the efficiency
of the fixed-effects estimators and identify the true working correlation structure for the
correlated data. Specifically, estimating random effects accurately is a key step since it
reflects the subject-specific effect and affects the efficiency of the fixed-effects estimation.
Cho, Wang, and Qu (2017) estimated unobserved subject-specific treatment effects through
conditional random-effects modeling and used the results to personalize treatment for lon-
gitudinal data. In this paper, based on conditional mix-GEE models, we propose a new
methodology for improving efficiency of fixed-effects and random-effects estimation. In the-
ory, we show that the proposed method yields a consistent and more efficient estimator
than the random-effect estimator that ignores correlation information from longitudinal
data. Simulation results show that the accuracy of the random effects is increased and the
efficiency of the fixed effects is greatly improved too. In addition, we can identify the true
working correlation structure.
The paper is organized as follows. Section 2 describes the existing cmix-GEE approaches

firstly, then introduces the new methodology for improving the efficiency of the fixed effects
and random effects estimation and provides the computational algorithm and its asymptotic
properties for the proposed method. Simulation studies and conclusions are given in Sec. 3
and Sec. 4. Proofs and necessary conditions are provided in the Appendix.

2. Notation and framework

In this section, the cmix-GEE method for longitudinal data will be firstly described.
Then, the methodology for improving the efficiency of the fixed effects and random
effects estimation based on the cmix-GEE method will be presented.

2.1. Cmix-GEE method

For longitudinal data, Let yij be a response variable measured at the jth time point for
the ith subject, i ¼ 1; :::;N; j ¼ 1; :::;T. Xi be the corresponding known T� p covariate
matrix associated with a p-dimensional vector of fixed effects b. Then, the observed
data can be written as yi ¼ ðyi1; :::; yiTÞT . When there is a strong indication of individual
variations, it is more sensible to apply a random-effects model to analyze longitudinal
data. For the generalized linear mixed model (GLMM), given the random effects bi, the
conditional mean of the response EðyijbiÞ ¼ lbi is a function of the linear predictor
Xibþ Zibi, that is, gðlbi Þ ¼ Xibþ Zibi, where gð�Þ is a known link function, bi is a q�1
vector of random effects, and Zi is the covariate associated with random effect bi.
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Given random effects bi, if the conditional likelihood of yi is unknown, quasi-likeli-
hood equation (Wedderburn 1974) was used to obtain fixed effects and random effects
estimators. Specifically, to ensure the identification for the fixed effect b and random
effects bi, a constraint PAb ¼ 0 was imposed in Jiang (1999), where PA is a known pro-
jection matrix. Then the quasi-score equations corresponding to b and bi areXN

i¼1

�
@lbi
@b

�T

Wb
i
�1 yi�lbi

� �
¼ 0 (1)

and

h1 ¼ @lb1
@b1

� �T
Wb

1
�1 y1�lb11

� �
�k

@PAb
@b1

PAb ¼ 0

..

.

hN ¼ @lbN
@bN

� �T
Wb

N
�1 yN�lbNN

� �
�k

@PAb
@bN

PAb ¼ 0

0
BBBBB@

1
CCCCCA (2)

where Wb
i is a working correlation matrix conditional on the random effects, k is a

Lagrange multiplier. In the PQL approach, Wb
i is diagonal. However, Wb

i ¼ varðyijbiÞ is
not necessarily a diagonal matrix, since conditional on random effects bi, the repeated
measurements within a subject may be correlated. Wang, Tsai, and Qu (2012) developed
the conditional quadratic inference function (CQIF) method to improve the efficiency
of the fixed effects estimators. The main idea of their approach is that the inverse R�1

of the working correlation in Wb
i ¼ A

1
2
iRA

1
2
i was approximated by a class of linear combi-

nations of known matrices M1; :::;Mm, that is,

R�1 � a1M1 þ � � � þ amMm �
Xm
j¼1

ajMj

where Ai ¼ diagðvarðyi1jbÞ; :::; varðyiT jbÞÞ. The advantage of the CQIF approach is
that the objective functions were proposed for inference. Given the random effects,
CQIF method considered the serial correlation within the same cluster and the distri-
bution assumption for the random effects was not required. However, CQIF method
cannot identify the true correlation structure for the correlated data. Wang and
Carey (2003) indicated that when the correlation structure is misspecified, the effi-
ciency of the estimators for regression parameters can be seriously affected.
Condition mix-GEE approach was proposed by Xing et al. (2018) to identify the true
correlation structure for longitudinal data with unspecified random-effects distribu-
tions. The basic idea is that conditional on the random effects, the working correl-
ation matrix RðaÞ is represented by a finite combination of many working correlation
structures, that is,

R að Þ ¼ p1R
1ð Þ a1ð Þ þ p2R

2ð Þ a2ð Þ þ :::þ pLR
Lð Þ aLð Þ ¼

XL
l¼1

plR
lð Þ alð Þ

where the coefficient pl of working correlation RðlÞ represents its proportion in the sam-
ple from the finite mixture of distributions with different correlation structures. Then,
given the random effects bi, the covariance matrix of yi can be expressed as
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Cov yijbi
� � ¼ A

1
2
i

XL
l¼1

plR
l alð Þ

" #
A

1
2
i : (3)

Given the random effects bi and nuisance parameters pl; al, the estimators of the
fixed-effects b can be obtained by solving the following equation:

XN
i¼1

@lbi
@b

 !T

A�1=2
i

XL
l¼1

plR
l alð Þ

" #�1

A�1=2
i yi � lbi

� �
¼ 0: (4)

To estimate the random effects bi, extended scores for random effects was proposed
by Xing et al. (2018) as

Gr
N ¼ gI1

� �T
; kbT1 ; :::; gIN

� �T
; kbTN ; k PAbð ÞT

n oT

(5)

where gIi ¼ ð@lbi@bi
ÞTA�1

i ðyi�lbi Þ; the Lagrange multiplier k is chosen to be log(N), PA ¼
AðATAÞ�1AT is a known projection matrix on the null space of ðI�PXÞZ, and PX is
defined similarly as PA with covariates X and Z associated with fixed effects and ran-
dom effects, respectively.
Given fixed-effects b, the random effects estimators can be obtained by minimizing

the objective function

Gr
N

� �T Gr
N

� �
: (6)

Then,the estimators for the fixed-effects b and random-effects bi can be obtained by
an iterative algorithm.

2.2. A new methodology for improving efficiency estimation

Cmix-GEE method can accommodate the serial correlation within the same cluster and
dose not requires the normality assumption for random effects. The feature of cmix-
GEE approach is that the estimators of the regression parameters are more efficient
than CQIF even if the working correlation structure is not correctly specified. In add-
ition, according to the estimated proportions, the true correlation structure can be iden-
tified (Xing et al. 2018). However, they do not accommodate the serial correlation
information from longitudinal observations in obtaining the estimators of bi. It is
important to obtain the more accuracy estimators of random effects when the subject-
specific effect is one of our interests (Cho, Wang, and Qu 2017). At the same time, the
accuracy of the estimators for random effects could affect the efficiency of the estimator
of fixed effects b.
A new methodology was developed to improve the accuracy of the random-effects

estimation without the normality assumption for the random effects. The crucial step
relies on accurate estimation for the random effects bi in formulation (6). We formulate
the estimating equations corresponding to the random-effects as

gCi ¼ @lbi
@bi

 !T

A�1=2
i C�1A�1=2

i yi�lbi

� �
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where C ¼ 1
N

PN
i¼1ðyi � lbi Þðyi�lbi ÞT is the correlation matrix estimator based on the

method of moments. Then the extended scores with constraints of the mean and vari-
ance for the random effects b is defined as:

GC
N ¼ gC1

� �T
; kbT1 ; :::; gCN

� �T
; kbTN ; k PAbð ÞT

n oT

(7)

where the Lagrange multiplier k is chosen to be log(N). Given the fixed-effects b, the
random effects estimators can be obtained by minimizing the inference function

GC
N

� �T
GC
N

� �
: (8)

Then, the estimators for the fixed-effects b and random-effects bi can be obtained by
an iterative algorithm using Eq. (4) and inference function in (8). The proposed
approach for obtaining the estimator of random effects bi could improve the efficiency
of fixed-effects and random-effects estimators based on the cmix-GEE models. Our pro-
posed approach can also address unbalanced longitudinal data, the strategy is similar to
Xing et al. (2018). So we omit here.

2.3. Implementation and algorithm

In this section, we provide an algorithm to estimate fixed-effects and random-effects parame-
ters. Conditional on the random-effects bi and fixed-effects b, an pseudo likelihood expect-
ation maximization (PL-EM) algorithm was used to obtain the estimator of nuisance
parameters w ¼ ðal;plÞLl¼1 in Eq. (4). The details of estimation can be seen in Sec. 2.4 (Xing
et al., 2018). Given the estimated random-effects b̂i and estimated nuisance parameters ŵ,
the regression parameters b can be obtained by plugging the estimated working correlation
matrix R̂ ¼PL

l¼1 p̂lR
lðâlÞ into (4), which leads to the following iterative algorithm.

Step 1. Set the initial value of random effects as b̂ ¼0;

Step 2. Obtain the initial b̂0 from the generalized linear model assuming independent
correlation structure;

Step 3. At the kth step, apply the PL-EM algorithm to obtain ðâkl ; p̂k
l ÞLl¼1;

Step 4. Let R̂
k ¼PL

l¼1 p̂
k
l R

lðâkl Þ, compute b̂
k
by solving the Eq. (4);

Step 5. Update the correlation matrix C using the b̂
k
and b̂

ðk�1Þ
;

Step 6. Given R̂
k
; b̂

k
and C, b̂

k
can be obtained by minimizing (8);

Step 7. Repeat Steps 3-6 until the convergence criterion is reached.

2.4. Asymptotic properties

In this section, we investigate the asymptotic properties of our proposed approach esti-

mators. Let b0 ¼ ðb001; :::; b00NÞ0 be the true realization of the random effects and let b̂ ¼
ðb̂01; :::; b̂

0
NÞ0 be the corresponding random effects estimators, where b0i and b̂i are q� 1

vectors of random effects for the ith subject.

Theorem 1. Under the regularity conditions, the estimator of nuisance parameters ŵ ¼
ðâl ; p̂lÞLl¼1 has

ffiffiffiffi
N

p ðŵ�w�Þ ¼ Opð1Þ. Where ŵ ¼ ŵðbjbÞ;w� ¼ w�ðbjbÞ.
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Proof. Noting that given any random effects bi; ŵ and w� are actually functions of b.
The detailed proof of this theorem is similar to Theorem 2.1 in Xing et al. (2018). So,
the proof is omitted here. w

Let b0 and b0 be the true value of the fixed effects parameter and random effects
respectively. Let b̂0 be a solution of the following equation:

U b;M ŵ bð Þ
� �

jb0
� �

¼ 1
N

XN
i¼1

Ui b;M ŵ bð Þ
� �

jb0
� �

¼ 0

where Uiðb;MjbÞ ¼ ðð@lbi@b ÞTA�1=2
i M�1A�1=2

i ðyi�lbi ÞÞ: For any given random effects b,

b̂
M

is the solution of the equation

U b;Mjbð Þ ¼ 1
N

XN
i¼1

@lbi
@b

 !T

A�1=2
i M�1A�1=2

i yi�lbi

� �
Þ¼ 0

where M ¼ MðŵðbÞÞ ¼PN
i¼1 p̂lRlðâlÞ:

Then the asymptotic normality properties of regressive parameters were obtain in
Theorem 2.

Theorem 2. Under the regularity conditions provided in the Appendix,

I.
ffiffiffiffi
N

p ðb̂0�b0Þ!d Nð0;X0Þ, where X0¼ limN!1ð 1N
PN

i¼1HiÞ�1ð 1N
PN

i¼1GiÞ ð 1N
PN

i¼1

HiÞ�1; Hi¼DT
i A

�1=2
i ðR�Þ�1A�1=2

i Di; Gi¼DT
i A

�1=2
i ðR�Þ�1~RðR�Þ�1A�1=2

i Di. ~R is a

true correlation matrix of yi, R
� ¼PL

l¼1p
�
l R

lða�l Þ;
II. b̂

M !p b0;

III.
ffiffiffiffi
N

p ðb̂M�b0Þ!d Nð0;X1Þ, where

X1 ¼ limN!1 1
N

PN
i¼1 Hi

� ��1
1
N

PN
i¼1 R

�
i

� �
1
N

PN
i¼1Hi

� ��1
;

R�
i ¼E Ui b̂

M
;M ŵ
� �

jb0
� �

�Ui b0;M ŵ
� �

jb0
� �� �

Ui b̂
M
;M ŵ
� �

jb0
� �

�Ui b0;M ŵ
� �

jb0
� �� �T

" #
:

IV. If b̂ is a consistent estimator of b0, then X1 ! X0, as N ! 1.

The above theorem shows that given the efficiency estimated random effects b̂, the estima-

tor of fixed effects b̂0 and b̂
M

are consistent and asymptotic normality. The proof is similar
to the Lemma 2.2 and Theorem 2.3 in Xing et al. (2018). So the proofs were omitted here.

Theorem 3. Under the regularity conditions provided in the Appendix, the estimator b̂i
satisfies k b̂i�boi k ¼Opðn�1=2Þ, where k � k is the Euclidean norm.
The advantage of our new methodology for improving the efficiency estimation is that

the correlation information for random effects estimation was incorporated. In contrast to
the approaches assuming independent working structure for estimating the random effects
Xing et al. (2018), and Wang, Tsai, and Qu (2012), the efficiency of random effect estima-
tion is improved greatly. The performance can be seen in Table 2 of simulation studies.
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The
ffiffiffi
n

p
-consistency of random-effects estimation is challenging due to the additional

serial correlation from repeated measurements conditional on the random effects. Then an
L2-mixingale method (Ortega and Rheinboldt 1973) conditional on the serial correlation for
the repeated measurements was imposed. The proof is provided in the Appendix.

3. Simulation studies

In this section, we conducted simulation studies to evaluate the performance of the proposed
method in improving efficiency estimation based on conditional mix-GEE models. The con-
ditional correlated responses were generated using the conditional mean and covariance

lbi ¼ b0 þ Xib1 þ bi; corr yijXi; bi
� � ¼ R: i ¼ 1; :::;Nð Þ

where b0 ¼ 1, b1 ¼ �1, the covariate Xi are generated from uniform (0.5, 1.5). The ran-
dom effects bi is generated from Beta(0.5,0.5) distribution. The true correlation struc-
tures are CS and AR(1) with the correlation coefficient a¼ 0.7, 0.3 or a three
component mixture of AR(1), CS and MA(1) with the true nuisance parameters
ð0:7; 0:7; 0:4; 0:3; 0:3; 0:4Þ, ð0:4; 0:4; 0:3; 0:3; 0:3; 0:4Þ; ð0:7; 0:7; 0:4; 0:5; 0:5; 0Þ, ð0:7; 0:7;
0:4; 0:2; 0; 0:8Þ; ð0:4; 0:4; 0:3; 0:2; 0; 0:8Þ. The sample size is N¼ 20, 50 or 100. The clus-
ter size is chosen to be T¼ 10. In each simulation study, 200 Monte Carlo samples will
be generated. In order to compare the performance of different methods, the mean
square error of b̂ is defined as

MSE b̂ð Þ ¼
X200
k¼1

XN
i¼1

k b̂i
kð Þ�bik2=200N

where b̂i
ðkÞ

is the estimator of the true parameter bi from the kth simulation, k � k
denotes the Euclidean norm.
We compared the new methodology for improving the efficiency of fixed-effects and

random-effects estimation based on conditional mix-GEE models (pcmix-GEE) to Xing
et al. (2018) conditional mix-GEE models (cmix-GEE), to Cho, Wang, and Qu (2017)
accuracy conditional quadratic inference functions (CCQIF) approach and to Wang,
Tsai, and Qu (2012) conditional quadratic inference functions approach (CQIF).

3.1. Simulation 1: single component correlation structure from continuous response

In this section, we firstly consider the data from a single correlation structure CS and
AR(1). Tables 1 and 2 provide the MSEs of the estimators for the fixed-effects b0 and
b1 under different values of the nuisance parameter a with different sample sizes.
As seen from Tables 1 and 2, the MSEs of the new methodology pcGEE are smaller

than those obtained from the other three CCQIF, cmix-GEE and CQIF approaches,
even under the misspecified working correlation structure. At the same time, the MSEs
of pcmix-GEE method are smaller as the sample sizes increases.
Table 3 shows the MSEs of random-effects b̂ under different approaches. As seen

from Table 3, the MSEs for the random effects b̂ of pcmix-GEE approach are smaller
than those obtained from cmix-GEE (Xing et al. 2018) and CQIF (Wang, Tsai, and Qu
2012) methods. In addition, the MSEs of pcmix-GEE approach could provide the same
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efficiency for the random-effects b̂ to the CCQIF method which could not identify the
true correlation structure. However, according to the estimated proportions, the pcmix-
GEE method can identify the true correlation structure.
Table 4 shows the nuisance parameters estimation of pcmix-GEE method. From

Table 4, we can see that the estimated mixture proportions given by pcmix-GEE
method correctly identified the true correlation structure as the sample size increase,
and the correlation parameters a can even be correctly estimated.

3.2. Simulation 2: three component correlation structures from continuous response

In this section, we consider the case in which the true correlation is given by a three
component mixture of AR(1), CS and MA(1) for the longitudinal data. The true values
of the correlation parameters and the true mixture proportions are given in vectors in
Table 5. We mainly compare the performance of the MSEs for the CCQIF and CQIF
under the AR(1) and CS correlation structures and the cmix-GEE method. In general,
to all sample sizes, the pcmix-GEE estimators for the slope have the lowest MSEs com-
pared to the MSEs under the CCQIF and CQIF approaches. Meanwhile, as the sample
size increases, the efficiency of the pcmix-GEE estimator also improves, as expected. In
addition, we also observe that the component proportions are consistently estimated by
the pcmix-GEE method. We also compare the performance of the MSEs for the

Table 1. MSE for the estimator of the intercept b0 ¼ 1 with single component correlation structure.
RðaÞ N a pcmixGEE CCQIFcs CCQIFAR cmixGEE CQIFcs CQIFAR
CS 20 0.7 0.054433 0.062325 0.071364 0.056334 0.064484 0.062349
CS 20 0.3 0.067921 0.071172 0.092051 0.070934 0.089193 0.079959
AR 20 0.7 0.051422 0.074994 0.056061 0.054287 0.091233 0.055656
AR 20 0.3 0.060313 0.072211 0.075600 0.063401 0.124061 0.078787
CS 50 0.7 0.020720 0.022101 0.025506 0.020711 0.021757 0.022711
CS 50 0.3 0.023436 0.025801 0.028807 0.023962 0.026950 0.025281
AR 50 0.7 0.016512 0.024329 0.017115 0.016995 0.026519 0.017250
AR 50 0.3 0.021064 0.022222 0.020904 0.021412 0.032811 0.021338
CS 100 0.7 0.011921 0.012303 0.013738 0.011917 0.012192 0.012640
CS 100 0.3 0.013005 0.013291 0.013916 0.012931 0.013305 0.012761
AR 100 0.7 0.007581 0.012534 0.007638 0.007765 0.013261 0.007678
AR 100 0.3 0.013205 0.014928 0.013827 0.013588 0.017615 0.014204

pcmix-GEE: our proposed new methodology for improving the efficiency of estimation based on conditional mix-GEE models;
CCQIF: Cho, Wang, and Qu (2017) accuracy conditional quadratic inference functions; cmix-GEE: Xing et al. (2018) conditional
mix-GEE models; CQIF: Wang, Tsai, and Qu (2012) conditional quadratic inference functions approach.

Table 2. MSE for the estimator of the intercept b1 ¼ �1 with single component correlation structure.
RðaÞ N a pcmixGEE CCQIFcs CCQIFAR cmixGEE CQIFcs CQIFAR
CS 20 0.7 0.017208 0.018194 0.025816 0.019451 0.021183 0.021266
CS 20 0.3 0.047542 0.048422 0.063874 0.050370 0.064022 0.057495
AR 20 0.7 0.023977 0.045190 0.029007 0.024529 0.062207 0.027969
AR 20 0.3 0.053810 0.065141 0.065353 0.056426 0.117585 0.069948
CS 50 0.7 0.008365 0.008578 0.010071 0.008461 0.009025 0.009525
CS 50 0.3 0.019535 0.020228 0.023409 0.020428 0.022700 0.020890
AR 50 0.7 0.009244 0.015890 0.009840 0.009232 0.017722 0.010048
AR 50 0.3 0.019318 0.022216 0.019072 0.019830 0.032824 0.019929
CS 100 0.7 0.004418 0.004452 0.005789 0.004432 0.004487 0.004829
CS 100 0.3 0.013005 0.013291 0.013916 0.012931 0.013305 0.012761
AR 100 0.7 0.007581 0.012534 0.007638 0.007765 0.013261 0.007678
AR 100 0.3 0.008887 0.008959 0.009707 0.008812 0.009042 0.008731
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random-effects b̂ among different methods. The results are similar to the single compo-
nent correlation structure as expected. So we do not list here.

Table 3. MSE for the estimator of the random effect b with single component correlation structure.
RðaÞ N a pcmixGEE CCQIFcs CCQIFAR cmixGEE CQIFCS CQIFAR
CS 20 0.7 0.011083 0.011084 0.011083 0.417760 0.417465 0.417455
CS 20 0.3 0.011162 0.011163 0.011162 0.215643 0.214635 0.216105
AR 20 0.7 0.011034 0.011035 0.011034 0.244917 0.240004 0.242258
AR 20 0.3 0.011140 0.011141 0.011027 0.106387 0.104815 0.106432
CS 50 0.7 0.011285 0.011285 0.011285 0.375658 0.375532 0.375407
CS 50 0.3 0.011206 0.011206 0.011206 0.192019 0.191809 0.192104
AR 50 0.7 0.011187 0.011187 0.011187 0.212031 0.210905 0.211404
AR 50 0.3 0.011244 0.011244 0.011244 0.089845 0.089267 0.089819
CS 100 0.7 0.011189 0.011189 0.011189 0.332674 0.332633 0.332561
CS 100 0.3 0.011281 0.011281 0.011281 0.168972 0.168921 0.168992
AR 100 0.7 0.011237 0.011237 0.011237 0.189025 0.188612 0.188816
AR 100 0.3 0.011237 0.011237 0.011237 0.080115 0.079946 0.080127

Table 4. Nuisance parameters estimation of PCmix-GEE method.
RðaÞ N a p̂cs p̂ar1 p̂ma1 âcs âar1 âma1

CS 20 0.7 0.97 0.02 0.01 0.70 0.73 0.25
CS 20 0.3 0.86 0.07 0.07 0.33 0.20 0.05
AR 20 0.7 0.05 0.91 0.04 0.63 0.71 0.44
AR 20 0.3 0.16 0.45 0.39 0.14 0.35 0.29
CS 50 0.7 0.98 0.01 0.01 0.70 0.74 0.26
CS 50 0.3 0.91 0.04 0.05 0.33 0.21 0.02
AR 50 0.7 0.03 0.95 0.02 0.64 0.70 0.45
AR 50 0.3 0.15 0.50 0.35 0.15 0.34 0.27
CS 100 0.7 0.99 0.01 0.00 0.70 0.76 0.22
CS 100 0.3 0.92 0.04 0.04 0.32 0.21 0.01
AR 100 0.7 0.02 0.96 0.02 0.65 0.70 0.44
AR 100 0.3 0.11 0.53 0.36 0.14 0.35 0.27

Table 5. MSE for the estimator of the slope b1 ¼ �1 with three components mixture correl-
ation structures.
N pcmixGEE CCQIFcs CCQIFAR cmixGEE CQIFcs CQIFAR pcs par1 pma1

(acs,aar1; ama1,pcs,par1;pma1)¼(0.7,0.7,0.4,0.3,0.3,0.4)
20 0.029570 0.041589 0.033207 0.029471 0.060050 0.036324 0.19 0.60 0.21
50 0.011603 0.015958 0.012910 0.011458 0.017486 0.013011 0.19 0.63 0.18
100 0.006440 0.009362 0.007050 0.006749 0.009814 0.007025 0.19 0.64 0.17

(acs,aar1; ama1,pcs,par1;pma1)¼(0.4,0.4,0.3,0.3,0.3,0.4)
20 0.036658 0.046134 0.043606 0.037314 0.081722 0.045130 0.29 0.40 0.31
50 0.017095 0.020561 0.019660 0.017014 0.026297 0.019316 0.30 0.41 0.29
100 0.009124 0.010153 0.009684 0.009270 0.011304 0.009538 0.31 0.42 0.27

(acs,aar1; ama1,pcs,par1; pma1)¼(0.7,0.7,0.4,0.5,0.5,0)
20 0.025063 0.032493 0.028467 0.025356 0.042281 0.027925 0.36 0.61 0.03
50 0.008195 0.011353 0.009207 0.008370 0.012176 0.008838 0.33 0.65 0.02
100 0.004326 0.005437 0.004861 0.004533 0.005279 0.004434 0.34 0.65 0.01

(acs,aar1; ama1,pcs,par1; pma1)¼(0.7,0.7,0.4,0.2,0,0.8)
20 0.038685 0.056486 0.047476 0.039039 0.084081 0.049370 0.12 0.30 0.58
50 0.017014 0.021308 0.017355 0.016795 0.028163 0.017832 0.10 0.31 0.59
100 0.00783 0.010748 0.008181 0.007863 0.011988 0.008423 0.11 0.29 0.60

(acs,aar1; ama1, pcs,par1;pma1)¼(0.4,0.4,0.3,0.2,0,0.8)
20 0.049664 0.059033 0.056486 0.049997 0.115850 0.062242 0.22 0.32 0.46
50 0.019819 0.022883 0.020424 0.019554 0.029064 0.020365 0.21 0.33 0.47
100 0.010902 0.013617 0.011046 0.011291 0.015092 0.011492 0.21 0.34 0.45
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4. Conclusions

In this paper, a new methodology based on the cmix-GEE method was proposed to
improve the efficiency of the fixed-effects and random-effects estimation. A major advan-
tage of the proposed strategy is that we can significantly improve the accuracy of random
effects estimation since our proposed approach utilizes the serial correlation information for
repeated measurements in estimating random effects. At the same time, the efficiency of
fixed effects estimation can be significantly improved because of the accuracy of the ran-
dom effects estimation. In addition, normality assumption for the random effects in our
proposed approach is not required. According to the estimated mixture proportions, the
true correlation structure can be correctly identified in our proposed approach. Our
approach can not only be applied for correlated data but also for the individual random
effect for longitudinal data, which is also our interest. Our simulation studies show that the
MSEs of the pcmix-GEE method are smaller than those obtained from CCQIF, CQIF and
cmix-GEE approaches, even for the misspecified working correlation structure. Moreover,
as the sample size increases, the efficiency of the pcmix-GEE estimator is also improved,
which coincided with our expectation. In addition, the estimates of the component propor-
tions are consistent as the sample size tends to infinity.
For the case where the sample size is finite small, especially, when the sample size is

smaller than 10, there maybe some difficult in identifying the parameters with our proposed
method. Westgate (2012, 2013) has shown that the use of an unstructured working correl-
ation with GEE or the empirical approach with QIF can impact the validity of small-sample
inference. In our proposed approach, the correlation matrix C ¼ 1

N

PN
i¼1ðyi � lbi Þðyi�lbi ÞT

is an unstructured working correlation matrix, this maybe the reason that affects the infer-
ence of small samples. So, our future work is to correct the covariance estimators to
improve the inference of our proposed method when the sample size is finite small.
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Appendix: Proof of Theorem 3

We need the following regularity conditions and assumptions:
C1. The parameter space is compact.
C2. There exists HðY; b; bÞ ¼ Opð1Þ such that j@ŵ=@bj � HðY; b; bÞ ¼ Opð1Þ and j@ŵ=@bj �

HðY; b; bÞ ¼ Opð1Þ:
C3. @U2

i ðb;MðŵðbÞÞjbÞ
@b@bT

	 

is continuous at b0 with probability one, and E supb2N

@U2
i ðb;MðŵðbÞÞjbÞ

@b@bT

	 

<1,

where N denotes the neighborhood of b.

C4. @U2
i ðb;MðwðbÞÞjbÞ

@w@wT

h i
is continuous at w� with probability one, and E supw2N

@U2
i ðb;MðwðbÞÞjbÞ

@w@wT

h i
<1,

where N denotes the neighborhood of w.
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C5. Conditional on the random effects b0, the parameter b is identifiable, i.e,

E Ui b0;M w� b0ð Þjb0
� �� �� � ¼ 0:

C6. EfEfUiðb0;Mðw�ðb0Þjb̂ÞÞgg !P 0.
C7. There is a neighborhood N such that E

 @Uiðb;MðwÞjbÞ
@b

�
is bounded with probability one.

C8. Assuming that Uiðb;MðwðbÞÞjbÞ is continuous and differentiable with respect to variable
b and b, and _Ui;bðb;MðwðbÞÞjbÞ is bounded in probability one.

C9. If eij ¼ yij�lijðbjbiÞ is the residual for the jth observation of subject i, the residuals within
the same subjects (ei1; :::; eiT) satisfy kEðeijjei;j�mÞk2 � cjum, for j ¼ 1; :::;T and m ¼ 1; :::;
j�1; keij�Eðeijjei;jþmÞk � cjumþ1, j ¼ 1; :::;T;m ¼ 1; :::; n�j, where k � k2 is the L2 norm, um are
some non-negative constants such that um ! 0 as m ! 1, and the cj; j � 1 satisfy limn!1
1
n

Pn
j¼1 cj <1, or fcjg can be given by fkeijk2g.

Proof. For convenience, let Qi ¼ A�1=2
i C�1A�1=2

i ; k � k1 denotes the sum of all matrix entries
absolute values, n is the cluster size. Since each element of Qi is bounded in probability, the order

of the kQik1 is between n and n2. Then, gCi ¼ ð@lbi@bi
ÞTA1

2
iC

�1A
1
2
iðyi�lbi Þ ¼ ð@lbi@bi

ÞTQiðyi�lbi Þ ¼Pn
k¼1

Pn
j¼1 cijk _lik;bi eij, where

� @lbi
@bi

�T ¼ ð _li1;bi ; :::; _lin;biÞT , cijk is the k � jth component of Qi, and

eij ¼ yij�lbijðbjbiÞ. The estimator b̂i is obtained by solving gCi ðb̂
MjbiÞ ¼ 0. By the Taylor expan-

sion of gCi ðb̂
MjbiÞ at b0, we have

0 ¼ gCi b̂
Mjbi

� �
¼ gCi b̂

Mjb0
� �

þ _gCi;bi b̂
Mj~bi

� �
b̂i�b0i
� �

;

where ~bi is between b̂i and b0i; _g
C
i;bi
ðb̂Mj~biÞ ¼ @

@bi
gCi ðb̂

MjbiÞjbi¼~b i
, Then we have

b0i�b̂i ¼ _gCi;bi b̂
Mj~bi

� �� ��1

gCi b̂
Mjb0

� �
:

By Theorem 2, b̂
M!p b0, we have

b0i�b̂i ! _gCi;bi b0j~bi
� �� ��1

gCi b0jb0ð Þ:
Since _lij;biðb0j~biÞ is bounded in probability, we have ð _gCi;biðb0j~biÞÞ

�1 ¼ Opðr�1
n Þ. Then there

exists a constant K1 such that

gCi b0jb0ð Þ ¼
Xn
k¼1

Xn
j¼1

cijk _lik;bi eij

�����
����� � K1rn

n
rn

Xn
k¼1

cijk
1
n

Xn
j¼1

eij

�����
����� ¼ Op rn�eið Þ;

where n
rn

Pn
k¼1 cijk ¼ Opð1Þ, and 1

n

Pn
j¼1 eij ¼ �ei. Since ð _gCi;biðb0j~biÞÞ

�1 ¼ Opðr�1
n Þ and gCi ðb0jb0Þ ¼

Opðrn�eiÞ, then b0i�b̂i ¼ Opð�eiÞ. Hence, we need to prove that �ei ¼ Opðn�1=2Þ, that is

Eðj�eij2Þ ¼ Opðn�1Þ.

E j�eij2
� �

� 2
n2
Xn
t¼1

Xt
j¼1

Ejeijeitj � 2
n2
Xn
t¼1

Xt
j¼1

E jeijjjE eitjeij
� �j� �

� 2
n2
Xn
t¼1

Xt
j¼1

cjctut�j ¼
2
n2
Xn
k¼1

uk

Xn�k

j¼1

cjcjþk;

Under the condition that the sequence of random variables eij satisfies the L2 mixingale condi-
tion and

P1
k¼1 uk <1, this implies Eðj�eij2Þ ¼ Opðn�1Þ. So this proof is complete! w
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